Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of novel anti-tumor agents

Q. Miao^{1,2}, D. Xu^{1,2}, Z. Wang², L. Xu², T. Wang¹, Y. Wu¹, D. B. Lovejoy³, D. S. Kalinowski³, G. Nie¹, Y Zhao^{1,4}, <u>D. R. Richardson³</u>

¹CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China; ²Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China; ³Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; ⁴CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

d.richardson@med.usyd.edu.au

INTRODUCTION

In this investigation, we have designed and synthesized an amphiphilic co-polymer with hyperbranched poly(amine-ester) and polylactide (HPAE-co-PLA) to generate nanoparticles (NPs).¹

EXPERIMENTAL

These NPs have been used to encapsulate a highly active hydrophobic anti-tumor agent, 2benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT). Encapsulation in NPs was done in an effort to increase the anti-tumor activity of this agent by facilitating its delivery to tumor cells. We have also examined and optimized the formulation parameters of the NPs that alter their drug-loading capacity and their physical, chemical and biological properties.

RESULTS AND DISCUSSION

The resulting NPs exhibited high Bp4eT-loading capacity and substantial stability in aqueous solution. In vitro drug release studies demonstrated a controlled drug release profile with increased release at acidic pH. Anti-tumor proliferation assays showed that both free drug and drug-encapsulated NPs markedly inhibited tumor cell proliferation in a time- and concentration-dependent manner. Direct microscopic observation revealed that the fluorescent NPs were taken up by cells and localized, in part, in organelles consistent with lysosomes.

CONCLUSION

These results demonstrate a feasible application of the amphiphilic hyper-branched co-polymer, HPAE-co-PLA, as nanocarriers for intracellular delivery of potent anti-tumor agents.

ACKNOWLEDGEMENTS

D.R.R. thanks the National Health and Medical Research Council of Australia (NHMRC) for Project Grants and a Senior Principal Research Fellowship.

KEYWORDS: nanoparticles, anti-tumor agents, Bp4eT, lysosomes.

REFERENCES

1. Q. Miao, D. Xu, Z. Wang, L. Xu, T. Wang, Y. Wu, D.B. Lovejoy, D.S. Kalinowski, D.R. Richardson, G. Nie and Y. Zhao, Biomaterials 31:7 (2010) 364-7375.